

FCC TCB & ISED CB

0685

91038

1309

3000 Bristol Circle,
Oakville, Ontario,
Canada L6H 6G4
Tel.: (905) 829-1570
Fax.: (905) 829-8050
Website: www.ultratech-labs.com
Email: vic@ultratech-

labs.comm

June 12, 2017

Camden Door Control

5502 Timberlea Blvd Mississauga, Ontario Canada, L4W 2T7

Attn.: Frank Gerlach

Subject: Verification Testing under ISED CANADA ICES-003, ISSUE 6, Class

B - Information Technology Equipment (Including Digital

Apparatus).

Product: SureWave Line Powered Hands Free Switch

Model No.: CM-331/CM-332

Dear Mr. Gerlach,

The product sample, as provided by you, has been tested and found to comply with ISED Canada ICES-003, Issue 6, Class B - Information Technology Equipment (Including Digital Apparatus), the compliance is suggested by Industry Canada as follows:

CAN ICES-3 (B)/NMB-3(B)

Enclosed you will find copies of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, BASc. V.P., Engineering

Encl

VERIFICATION CERTIFICATE

NOT TRANSFERABLE

This Verification Certificate is hereby issued to the named GRANTEE and is VALID ONLY for the equipment identified hereon for use under the rules and regulations listed below:

GRANTEE:

Camden Door Control.

Address:

5502 Timberlea Blvd Mississauga, Ontario

Canada L4W 2T7

Contact Person:

Mr. Frank Gerlach Phone #: 905-282-1750

Fax #: 905-282-9691 Email Address: fgerlach@embeddedsense.com

Equipment Type:

Class B Information Technology Equipment (Including Digital Apparatus)

Product Name: SureWave Line Powered Hands Free Switch

Model No.:

CM-331/CM-332

The above product was tested by UltraTech **Engineering Labs Inc. and** found to comply with:

ISED Canada ICES-003, Issue 6 - Information Technology Equipment (Including Digital Apparatus) — Limits and methods of measurement

Date of Authorization:

June 12, 2017

Note(s): See attached report, UltraTech's File No.: 17EMSI060_ICES003B, dated June 12, 2017 for details and conditions of Verification Compliance.

> Approved by: Tri M. Luu, BASc. V.P. - Engineering

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

91038

1309

46390-2049

AT-1945

SL2-IN-E-1119R

CA2049

ENGINEERING TEST REPORT

SureWave Line Powered Hands Free Switch Model No.: CM-331/CM-332

Applicant: **Camden Door Control**

> 5502 Timberlea Blvd Mississauga, Ontario Canada, L4W 2T7

Tested in Accordance With

Innovation, Science and Economic Development, (ISED) Canada, ICES-003, ISSUE 6, CLASS B Verification Authorization - Information Technology **Equipment (Including Digital Apparatus)**

UltraTech's File No.: 17EMSI060 ICES003B

This Test report is Issued under the Authority of

Tri M. Luu

Vice President of Engineering UltraTech Group of Labs

Date: June 12, 2017

Report Prepared by: Lien Trinh

Tested by: Hien Luu, Phuong Ngo

Issued Date: June 12, 2017

Test Dates: January 24 - June 1, 2017 The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

- This report must not be used by the client to claim product endorsement by any agency of the US Government. This test report shall not be reproduced, except in full, without a written approval from UltraTech.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

91038

1309

46390-2049

 $oxed{Large}$

AT-1945

SL2-IN-E-1119R

CA2049

TABLE OF CONTENTS

EXHIBIT	I. INTRODUCTION	3
1.1.	SCOPE	3
1.2.	REVISION HISTORY	3
1.3.	RELATED SUBMITTAL(S)/GRANT(S)	3
1.4.	NORMATIVE REFERENCES	3
EXHIBIT	2. PERFORMANCE ASSESSMENT	4
2.1.	CLIENT INFORMATION	4
2.2.	EQUIPMENT UNDER TEST (EUT) INFORMATION	
2.3.	FUNCTION / APPLICATION OF THE EUT	4
2.4.	LIST OF COMPONENTS/PARTS OF THE EUT	5
2.5.	LIST OF EUT'S PORTS	
2.6.	ANCILLARY EQUIPMENT	5
EXHIBIT	3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	6
3.1.	CLIMATE TEST CONDITIONS	6
3.2.	OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	6
3.3.	BLOCK DIAGRAM OF TEST SETUP FOR AC POWERLINE CONDUCTED EMISSION & RADIATED EMISSION MEASUREMENTS	7
3.4.	PHOTOGRAPHS OF TEST SETUP FOR AC CONDUCTED EMISSION MEASUREMENTS	8
3.5.	PHOTOGRAPHS OF TEST SETUP FOR RADIATED EMISSION MEASUREMENTS	10
EXHIBIT	4. SUMMARY OF TEST RESULTS	12
4.1.	LOCATION OF TESTS	12
4.2.	APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	12
4.3.	MODIFICATIONS REQUIRED FOR COMPLIANCE	12
EXHIBIT	5. MEASUREMENT DATA	13
5.1.	AC POWERLINE CONDUCTED EMISSIONS @ ISED CANADA ICES-003, ISSUE 6	
5.1.		
5.1.	-	
5.1.		
5.1.		
	RADIATED Emissions from class b Information Technology Equipment (Including Digital Apparatus) @ ISE	
	CANADA ICES-003, ISSUE 6	
5.2.		
5.2.	-	
5.2.		
5.2.	4. Test Results	17
EXHIBIT	, , , , , , , , , , , , , , , , , , , ,	
6.1.	LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY (9 KHz - 30 MHz)	
6.2	RADIATED EMISSION MEASUREMENT UNCERTAINTY	19

INTRODUCTION EXHIBIT 1.

1.1. SCOPE

Reference:	ISED Canada ICES-003, Issue 6
Title	Information Technology Equipment (Including Digital Apparatus) — Limits and methods of
	measurement
Purpose of Test:	Verification of Compliance for a Class B Unintentional Radiator.
Test Procedures	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and ISED Canada ICES-003, Issue 6
Environmental Classification:	Residential, Light-industry, Commercial & Industry

1.2. REVISION HISTORY

Document	Issue Date	Description
17EMSI060_ICES003B	June 12, 2017	Original Document

RELATED SUBMITTAL(S)/GRANT(S) 1.3.

None

1.4. NORMATIVE REFERENCES

Publication	Year	Title		
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise		
		Emissions from Low-Voltage Electrical and Electronic Equipment in the Range		
		of 9 KHz to 40 GHz		
ICES-003, Issue 6	2016	Information Technology Equipment (Including Digital Apparatus) — Limits		
		and methods of measurement		

PERFORMANCE ASSESSMENT **EXHIBIT 2.**

2.1. **CLIENT INFORMATION**

APPLICANT:				
Name:	Camden Door Control			
Address:	5502 Timberlea Blvd			
	Mississauga, Ontario			
	Canada L4W 2T7			
Contact Person:	Mr. Frank Gerlach			
	Phone #: 905-282-1750			
	Fax #: 905-282-9691			
	Email Address: fgerlach@embeddedsense.com			

MANUFACTURER:	
Name:	Embedded Sense Inc.
Address:	5155 Spectrum Way, Unit 17
	Mississauga, Ontario
	Canada L4W 5A1
Contact Person:	Mr. Frank Gerlach
	Phone #: 905-282-1750
	Fax #: 905-282-9691
	Email Address: fgerlach@embeddedsense.com

2.2. **EQUIPMENT UNDER TEST (EUT) INFORMATION**

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name	SureWave Hands Free Switch
Product Name	SureWave Line Powered Hands Free Switch
Model Name or Number	CM-331/CM-332
Type of Equipment	Unintentional Radiators
Power input source:	12/24 VAC/VDC

2.3. **FUNCTION /APPLICATION OF THE EUT**

EUT is a hand free switch to operate and/or unlock a door.

2.4. LIST OF COMPONENTS/PARTS OF THE EUT

None

2.5. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Specify minimum length and shielded/non-shielded)
1	External Switch	3	Terminal Block	Shielded, 1m
2	Relay Contacts	2	Terminal Block	Shielded, 1m

2.6. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests: None

File #: 17EMSI060_ICES003B June 12, 2017

EUT OPERATING CONDITIONS AND CONFIGURATIONS EXHIBIT 3. DURING TESTS

3.1. **CLIMATE TEST CONDITIONS**

The climate conditions of the test environment are as follows:

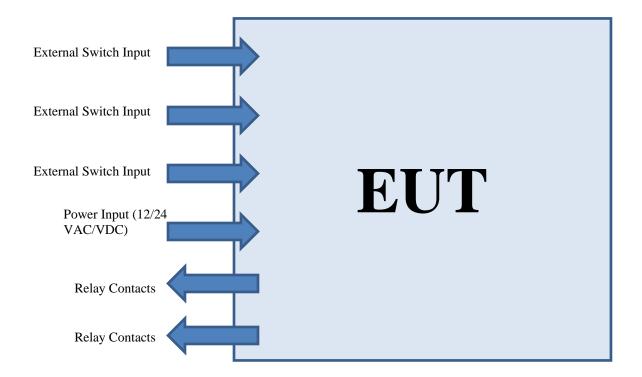
Temperature:	21°C
Humidity:	31%
Pressure:	102 kPa
Power input source:	12/24 VAC/VDC

OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS 3.2.

Equipment Setup / operating instructions: I)

Power on device and wait approximately 10 seconds for unit to boot up and stabilize

II) **Description or theory of normal operation:**


The EUT will take about 10s to boot and stabilize. The DIP switches are used to change the operating configurations and the potentiometers are used to adjust the operating time or the relays and the sensing range distance.

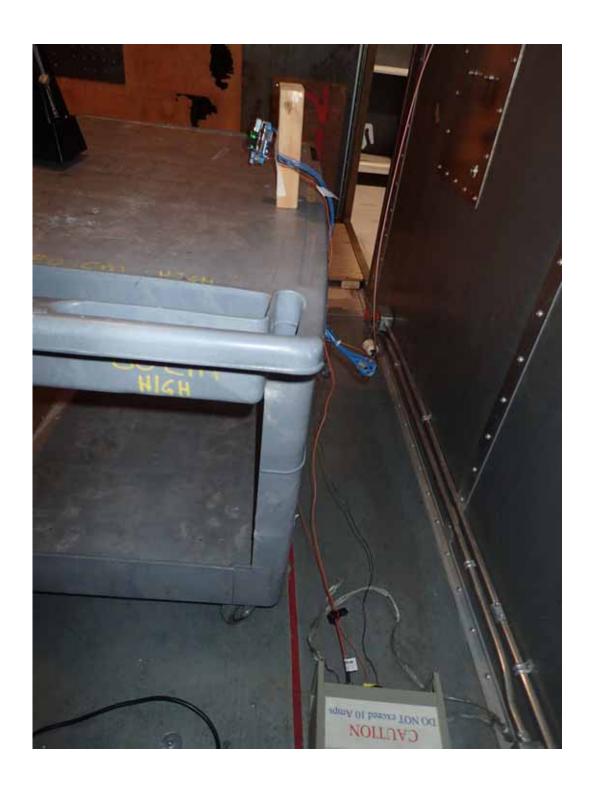
File #: 17EMSI060_ICES003B

June 12, 2017

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

3.3. BLOCK DIAGRAM OF TEST SETUP FOR AC POWERLINE CONDUCTED EMISSION & RADIATED EMISSION MEASUREMENTS

File #: 17EMSI060_ICES003B June 12, 2017


3.4. PHOTOGRAPHS OF TEST SETUP FOR AC CONDUCTED EMISSION MEASUREMENTS

ULTRATECH GROUP OF LABS

File #: 17EMSI060_ICES003B June 12, 2017

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

ULTRATECH GROUP OF LABS

File #: 17EMSI060_ICES003B June 12, 2017

3.5. PHOTOGRAPHS OF TEST SETUP FOR RADIATED EMISSION MEASUREMENTS

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: 17EMSI060_ICES003B

June 12, 2017

ULTRATECH GROUP OF LABS

File #: 17EMSI060_ICES003B

Page 12 of 19

Model No.: CM-331/CM-332

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. **LOCATION OF TESTS**

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with ANAB File No.: AT-1945.

4.2. **APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS**

ICES-003,	TEST REQUIREMENTS	MARGIN BELOW (-) /	COMPLAINCE
Issue 6		ABOVE (+) THE LIMITS	(YES/NO)
Class B	AC Power Line Conducted Emissions	- 7.2 dB @ 0.155 MHz	Yes
Table 2	Measurements		
Class B	Radiated Emissions from Computing Devices	- 9.6 dB @ 73.5 MHz	Yes
Table 5 & 7	(Digital Devices)		

MODIFICATIONS REQUIRED FOR COMPLIANCE 4.3.

None

File #: 17EMSI060_ICES003B

June 12, 2017

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EXHIBIT 5. **MEASUREMENT DATA**

5.1. AC POWERLINE CONDUCTED EMISSIONS @ ISED CANADA ICES-003, ISSUE

5.1.1. Limits

The equipment shall meet the limits of the following table:

	CLASS	B LIMITS		
Test Frequency Range (MHz)	Quasi-Peak (dBµV)	Average* (dBµV)	Measuring Bandwidth	
0.15 to 0.5	66 to 56*	56 to 46*	RBW = 9 kHz VBW ≥ 9 kHz for QP VBW = 1 Hz for Average	
0.5 to 5	56	46	RBW = 9 kHz VBW ≥ 9 kHz for QP VBW = 1 Hz for Average	
5 to 30	60	50	RBW = 9 kHz VBW \geq 9 kHz for QP VBW = 1 Hz for Average	

^{*} Decreasing linearly with logarithm of frequency

5.1.2. Method of Measurements

Refer to Ultratech Test Procedures ULTR-P001-2004 & ANSI C63.4 for method of measurements.

Calculation of Conducted Emission Voltage (dBµV):

This is calculated by adding the L.I.S.N factor, Cable loss factor, and Attenuator factor to the measured reading. The basic equation with a sample calculation is as follows:

$$Voltage (dB\mu V) = RA + AF + CF + LF$$

Where

RAReceiver/Analyzer Reading in dBµV

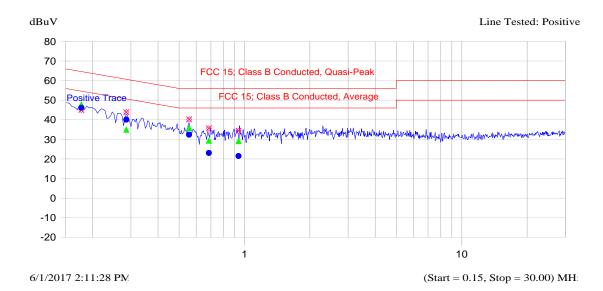
AF Attenuation Factor in dB Cable loss Factor in dB CF = L.I.S.N Factor in dB LF

5.1.3. Test Instruments

Refer to Exhibit 6 for Test Instruments & Measurement Uncertainty

File #: 17EMSI060_ICES003B

5.1.4. Test Results


FCC 15 Sub B; Class B Power Line Conducted Emission

Description: Line Voltage: 24Vdc Setup Name: FCC 15 Class B

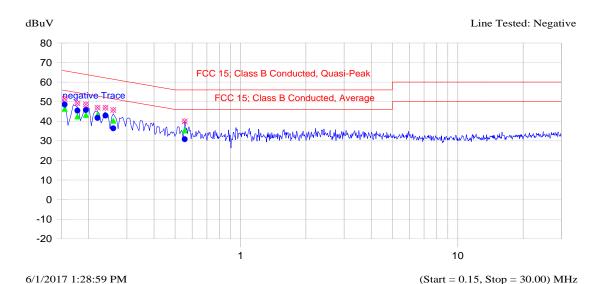
Customer Name: Embedded Sense Inc.

Project Number: EMSI-060Q Operator Name: Phuong Luu

EUT Name: SureWave hands Free Switch Date Created: 6/1/2017 1:25:11 PM Date Modified: 6/1/2017 2:09:28 PM

Frequency MHz	Peak dBuV	QP dBuV	QP-QP Limit dB	Avg dBuV	Avg-Avg Limit dB	Trace Name
0.177	45.0	47.8	-16.8	46.1	-8.5	Positive Trace
0.286	43.9	35.0	-25.7	40.1	-10.6	Positive Trace
0.556	40.2	35.8	-20.2	32.4	-13.6	Positive Trace
0.685	35.6	29.4	-26.6	23.0	-23.0	Positive Trace
0.939	34.4	29.1	-26.9	21.5	-24.5	Positive Trace

File #: 17EMSI060_ICES003B


FCC 15 Sub B; Class B Power Line Conducted Emission

Description: Line Voltage: 24Vdc Setup Name: FCC 15 Class B

Customer Name: Embedded Sense Inc.

Project Number: EMSI-060Q Operator Name: Phuong Luu

EUT Name: SureWave hands Free Switch Date Created: 6/1/2017 1:25:11 PM Date Modified: 6/1/2017 1:25:11 PM

Frequency MHz	Peak dBuV	QP dBuV	QP-QP Limit dB	Avg dBuV	Avg-Avg Limit dB	Trace Name
0.155	51.5	46.4	-19.4	48.6	-7.2	negative Trace
0.178	49.3	42.5	-22.1	45.4	-9.2	negative Trace
0.194	48.6	43.3	-20.6	45.7	-8.1	negative Trace
0.220	46.9	43.3	-19.5	41.7	-11.1	negative Trace
0.239	46.9	43.2	-18.9	42.9	-9.2	negative Trace
0.260	45.8	40.2	-21.2	36.4	-15.1	negative Trace
0.554	40.0	35.3	-20.7	30.8	-15.2	negative Trace

5.2. RADIATED EMISSIONS FROM CLASS B INFORMATION TECHNOLOGY **EQUIPMENT (INCLUDING DIGITAL APPARATUS) @ ISED CANADA ICES-003. ISSUE 6**

5.2.1. Limits

The equipment shall meet the limits of the following table:

Test Frequency Range (MHz)	Class B Limits (dBµV/m)	EMI Detector Used	Measurement Distance (meters)
30 – 88	40.0	Quasi-Peak	3
88 – 216	43.5	Quasi-Peak	3
216 – 960	46.0	Quasi-Peak	3
960 -1000	54.0	Quasi-Peak	3
Above 1000	54.0	Average	3
	74.0	Peak	

5.2.2. Method of Measurements

Refer to Ultratech Test Procedures ULTR-P001-2004 & ANSI C63.4 for method of measurements.

The spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following

Highest frequency generated or used in the device (MHz)	
	Upper frequency of measurement range
	(MHz)
Below 1.705	No radiated tests required
1.705 - 108	1000
108 – 500	2000
500 -1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz,
	whichever is lower

Calculation of Field Strength:

The field strength is calculated by adding the calibrated antenna factor and cable factor, and subtracting the Amplifier gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where FS Field Strength

> RA Receiver/Analyzer Reading

AF Antenna Factor =

CF Cable Attenuation Factor

AG Amplifier Gain

5.2.3. Test Instruments

Refer to Exhibit 6 for Test Instruments & Measurement Uncertainty

ULTRATECH GROUP OF LABS

File #: 17EMSI060_ICES003B June 12, 2017

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

5.2.4. Test Results

The emissions were scanned from 30 to 1000 MHz at 3 Meters distance and all emissions less than 20 dB below the limits were recorded.

FREQUENCY (MHz)	RF LEVEL (dBuV/m)	DETECTOR USED (PEAK/QP)	ANTENNA PLANE (H/V)	LIMIT (dBuV/m)	MARGIN (dB)	PASS/ FAIL
73.5	30.5	PEAK	V	40.0	-9.6	PASS
73.5	17.5	PEAK	Н	40.0	-22.5	PASS
95.3	33.5	PEAK	V	43.5	-10.0	PASS
95.3	18.0	PEAK	Н	43.5	-25.5	PASS
113.9	30.9	PEAK	V	43.5	-12.6	PASS
129.5	30.2	PEAK	V	43.5	-13.3	PASS

Page 18 of 19

Model No.: CM-331/CM-332

EXHIBIT 6. TEST INSTRUMENTS AND MEASUREMENT UNCERTAINTY (K=2, 95% CONFIDENCE LEVEL)

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY (9 KHZ - 30 MHZ)

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Calibration Due Date
EMI Receiver	HP	8593EM	3710A00223	9KHz-22 GHz,	Oct 4, 2017
System/Spectrum					
Analyzer with built-					
in Amplifier					
Attenuator	Pasternack	PE7010-20	07	DC to 2 GHz	Mar 13, 2018
L.I.S.N.	EMCO	3810/2	2209	9Khz-30Mhz	Jan 23, 2018

Test Date: Jun 1, 2017

	Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{i} u_i^2(y)}$	<u>+</u> 1.44	<u>+</u> 1.8
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 2.89	<u>+</u> 3.6

June 12, 2017

6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Due Date
EMI Receiver	Rohde &	ESU40	100037	20 Hz to 40 GHz	May 8, 2017
	Schawrz				
Pre Amplifier	Com-Power	Pam-118A	551052	500 MHz to 18 GHz	July 13, 2017
Biconilog Antenna	EMCO	3142	9601-1005	26 – 3000 MHz	May 12, 2018
Horn Antenna	EMCO	3115	9911-5061	1GHz – 18 GHz	April 24, 2018
Semi-Anechoic	TDK	FCC: 91038			Mar 27, 2020
Chamber		IC: 2049A-3			

Test Date: January 24, 2017

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal	Measured	Limit
	(30-1000 MHz):	(dB)	(dB)
Uc	Combined standard uncertainty:	<u>+</u> 2.39	<u>+</u> 2.6
	$u_{c}(y) = \sqrt{\sum_{i=1}^{m} u_{i}^{2}(y)}$	_	_
U	Expanded uncertainty U:	<u>+</u> 4.79	<u>+</u> 5.2
	$U = 2u_{c}(y)$	_	_

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured (dB)	Limit (dB)
Uc	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	± 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured (dB)	Limit (dB)
Uc	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration